Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1146065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960294

RESUMO

Grapes' infection by phytopathogenic fungi may often lead to rot and impair the quality and safety of the final product. Due to the concerns associated with the extensive use of chemicals to control these fungi, including their toxicity for environment and human health, bio-based products are being highly preferred, as eco-friendlier and safer alternatives. Specifically, yeasts have shown to possess antagonistic activity against fungi, being promising for the formulation of new biocontrol products.In this work 397 wine yeasts, isolated from Portuguese wine regions, were studied for their biocontrol potential against common grapes phytopathogenic fungal genera: Aspergillus, Botrytis, Mucor and Penicillium. This set comprised strains affiliated to 32 species distributed among 20 genera. Time-course monitoring of mold growth was performed to assess the inhibitory activity resulting from either diffusible or volatile compounds produced by each yeast strain. All yeasts displayed antagonistic activity against at least one of the mold targets. Mucor was the most affected being strongly inhibited by 68% of the tested strains, followed by Botrytis (20%), Aspergillus (19%) and Penicillium (7%). More notably, the approach used allowed the detection of a wide array of yeast-induced mold response profiles encompassing, besides the decrease of mold growth, the inhibition or delay of spore germination and the complete arrest of mycelial extension, and even its stimulation at different phases. Each factor considered (taxonomic affiliation, mode of action and fungal target) as well as their interactions significantly affected the antagonistic activity of the yeast isolates. The highest inhibitions were mediated by volatile compounds. Total inhibition of Penicillium was achieved by a strain of Metschnikowia pulcherrima, while the best performing yeasts against Mucor, Aspergillus and Botrytis, belong to Lachancea thermotolerans, Hanseniaspora uvarum and Starmerella bacillaris, respectively. Notwithstanding the wide diversity of yeasts tested, only three strains were found to possess a broad spectrum of antagonistic activity, displaying strong or very strong inhibition against the four fungal targets tested. Our results confirm the potential of wine yeasts as biocontrol agents, while highlighting the need for the establishment of fit-for-purpose selection programs depending on the mold target, the timing, and the mode of application.

2.
J Hazard Mater ; 432: 128687, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305414

RESUMO

Mycobacterium bovis causes tuberculosis (TB) at the human-wildlife-livestock interface. Environmental persistence of M. bovis excreted by infected hosts may cause indirect transmission to other animals. However, methodological constrains hamper assessment of M. bovis viability and molecular signature in environmental matrices. In this work, an innovative, modular, and highly efficient single-cell workflow combining flow cytometry (FLOW), fluorescence in situ hybridization (FISH), and fluorescence-activated cell sorting (FACS) was developed, allowing detection, quantification, and sorting of viable and dormant M. bovis cells from environmental matrices. Validation with spiked water and sediments showed high efficiency (90%) of cell recovery, with high linearity between expected and observed results, both in cell viability evaluation (r2 =0.93) and FISH-labelled M. bovis cells quantification (r2 ≥0.96). The limit of detection was established at 105 cells/g of soil in the cell viability step and 102 cells/g of soil in the taxonomical labelling stage. Moreover, FACS efficiency attained noteworthy recovery yield (50%) and purity (60% viable cells; 70% taxonomically labelled M. bovis). This new methodology represents a huge step for M. bovis assessment outside the mammal host, offering the rapid quantification of M. bovis cell load and cell viability, including viable but non-culturable cells, and further downstream cell analyses after FACS. Subsequent environmental data integration with the clinical component will expand knowledge on transmission routes, promising new paths in TB research and an intervention tool to mitigate the underlying biohazard.


Assuntos
Mycobacterium bovis , Animais , Animais Selvagens/microbiologia , Citometria de Fluxo , Hibridização in Situ Fluorescente , Mamíferos , Mycobacterium bovis/genética , Solo
3.
Int J Food Sci ; 2021: 6072731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778447

RESUMO

Yellow cured codfish has a typical yellow colour, distinctive taste, and low salt content due to its special curing process of the raw salted codfish involving several soaks in water of the raw salted codfish, alternated with drying steps. The purpose of this study was to assess the main functional groups of bacteria involved in this process and relate them with physicochemical properties of the product. A total of 28 codfish from Iceland were supplied by two local companies. Seven stages of the curing process were analyzed. From each of these seven stages, four fish samples were collected to carry out the microbial and physicochemical analyses (moisture, salt content, pH, total volatile basic nitrogen (TVB-N), and trimethylamine nitrogen (TMA-N)). Bacteria counts were performed using the MPN method and adequate culture media for aerobic, proteolytic, sulphite-reducing, biogenic amine, and trimethylamine-producing and ammonifying bacteria. Strains isolated from the highest dilutions with microbial growth were used to characterize the predominant bacteria. The results showed that total aerobic counts increased from 3.9 log MPN/g in raw salted codfish to 5.9 log MPN/g in the final. Proteolytic, ammonifying, and trimethylamine bacteria producers also increased to 8, 7.5, and 6.5 log MPN/g, respectively. The salt content decreases (from 17% until 8%) and moisture increases (53% until 67%) during the salted-raw-codfish soaking, favoring sulphite-reducing and biogenic amine-producing species, confirming that desalting enhances potential spoilers. The subsequent drying step benefits proteolytic, ammonifying, and trimethylamine-producing bacteria, with a corresponding non-protein-nitrogen content (TVB-N and TMA-N) increase. The dominant bacteria during yellow curing belong to the genera Staphylococcus, Psychrobacter, Pseudomonas, and Alcaligenes with a clear positive correlation between the content of Staphylococcus and Psychrobacter and TVB-N and TMA-N concentration. Staphylococcus spp. are the dominant bacteria in the steps where the product has a higher salt concentration; thus, it could be particularly useful as an indicator to control the industrially yellow curing process and could have an important role in the development of the final characteristics of this product.

4.
Microorganisms ; 9(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34442664

RESUMO

Classical molecular analyses of Mycobacterium bovis based on spoligotyping and Variable Number Tandem Repeat (MIRU-VNTR) brought the first insights into the epidemiology of animal tuberculosis (TB) in Portugal, showing high genotypic diversity of circulating strains that mostly cluster within the European 2 clonal complex. Previous surveillance provided valuable information on the prevalence and spatial occurrence of TB and highlighted prevalent genotypes in areas where livestock and wild ungulates are sympatric. However, links at the wildlife-livestock interfaces were established mainly via classical genotype associations. Here, we apply whole genome sequencing (WGS) to cattle, red deer and wild boar isolates to reconstruct the M. bovis population structure in a multi-host, multi-region disease system and to explore links at a fine genomic scale between M. bovis from wildlife hosts and cattle. Whole genome sequences of 44 representative M. bovis isolates, obtained between 2003 and 2015 from three TB hotspots, were compared through single nucleotide polymorphism (SNP) variant calling analyses. Consistent with previous results combining classical genotyping with Bayesian population admixture modelling, SNP-based phylogenies support the branching of this M. bovis population into five genetic clades, three with apparent geographic specificities, as well as the establishment of an SNP catalogue specific to each clade, which may be explored in the future as phylogenetic markers. The core genome alignment of SNPs was integrated within a spatiotemporal metadata framework to further structure this M. bovis population by host species and TB hotspots, providing a baseline for network analyses in different epidemiological and disease control contexts. WGS of M. bovis isolates from Portugal is reported for the first time in this pilot study, refining the spatiotemporal context of TB at the wildlife-livestock interface and providing further support to the key role of red deer and wild boar on disease maintenance. The SNP diversity observed within this dataset supports the natural circulation of M. bovis for a long time period, as well as multiple introduction events of the pathogen in this Iberian multi-host system.

5.
Front Microbiol ; 12: 686413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335512

RESUMO

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) has been considered a strict animal pathogen. Nevertheless, the recent reports of human infections suggest a niche expansion for this subspecies, which may be a consequence of the virulence gene acquisition that increases its pathogenicity. Previous studies reported the presence of virulence genes of Streptococcus pyogenes phages among bovine SDSD (collected in 2002-2003); however, the identity of these mobile genetic elements remains to be clarified. Thus, this study aimed to characterize the SDSD isolates collected in 2011-2013 and compare them with SDSD isolates collected in 2002-2003 and pyogenic streptococcus genomes available at the National Center for Biotechnology Information (NCBI) database, including human SDSD and S. dysgalactiae subsp. equisimilis (SDSE) strains to track temporal shifts on bovine SDSD genotypes. The very close genetic relationships between humans SDSD and SDSE were evident from the analysis of housekeeping genes, while bovine SDSD isolates seem more divergent. The results showed that all bovine SDSD harbor Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas IIA system. The widespread presence of this system among bovine SDSD isolates, high conservation of repeat sequences, and the polymorphism observed in spacer can be considered indicators of the system activity. Overall, comparative analysis shows that bovine SDSD isolates carry speK, speC, speL, speM, spd1, and sdn virulence genes of S. pyogenes prophages. Our data suggest that these genes are maintained over time and seem to be exclusively a property of bovine SDSD strains. Although the bovine SDSD genomes characterized in the present study were not sequenced, the data set, including the high homology of superantigens (SAgs) genes between bovine SDSD and S. pyogenes strains, may indicate that events of horizontal genetic transfer occurred before habitat separation. All bovine SDSD isolates were negative for genes of operon encoding streptolysin S, except for sagA gene, while the presence of this operon was detected in all SDSE and human SDSD strains. The data set of this study suggests that the separation between the subspecies "dysgalactiae" and "equisimilis" should be reconsidered. However, a study including the most comprehensive collection of strains from different environments would be required for definitive conclusions regarding the two taxa.

7.
Front Microbiol ; 12: 792921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003023

RESUMO

Plants and their associated microbiota share ecological and evolutionary traits that are considered to be inseparably woven. Their coexistence foresees the use of similar metabolic pathways, leading to the generation of molecules that can cross-regulate each other's metabolism and ultimately influence plant phenotype. However, the extent to which the microbiota contributes to the overall plant metabolic landscape remains largely unexplored. Due to their early presence in the seed, seed-borne endophytic bacteria can intimately colonize the plant's endosphere while conferring a series of phytobeneficial services to their host. Understanding the dynamics of these endophytic communities is a crucial step toward the formulation of microbial inoculants that can modulate the functionality of the plant-associated microbiota for improved plant fitness. In this work, wheat (Triticum aestivum) roots non-inoculated and inoculated with the bacterium Herbaspirillum seropedicae strain RAM10 were analyzed to explore the impact of inoculant-endophyte-wheat interrelationships on the regulation of tryptophan (Trp) metabolism in the endosphere environment. Root inoculation with H. seropedicae led to phylum-specific changes in the cultivable seed-borne endophytic community. This modulation shifted the metabolic potential of the community in light of its capacity to modulate the levels of key Trp-related metabolites involved in both indole-3-acetic acid (IAA) biosynthesis and in the kynurenine pathway. Our results support a mode of action of H. seropedicae relying on a shift in both the composition and functionality of the seed-borne endophytic community, which may govern important processes such as root growth. We finally provide a conceptual framework illustrating that interactions among roots, inoculants, and seed-borne endophytes are critical to fine-tuning the levels of IAA in the endosphere. Understanding the outcomes of these interactions is a crucial step toward the formulation of microbial inoculants based on their joint action with seed-borne endophytic communities to promote crop growth and health in a sustainable manner.

8.
Sci Rep ; 10(1): 20856, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257726

RESUMO

Animal tuberculosis (TB), caused by Mycobacterium bovis, is maintained in Portugal in a multi-host system, with cattle, red deer and wild boar, playing a central role. However, the ecological processes driving transmission are not understood. The main aim of this study was thus to contribute to the reconstruction of the spatiotemporal history of animal TB and to refine knowledge on M. bovis population structure in order to inform novel intervention strategies. A collection of 948 M. bovis isolates obtained during long-term surveillance (2002-2016, 15 years) of cattle (n = 384), red deer (n = 303) and wild boar (n = 261), from the main TB hotspot areas, was characterized by spoligotyping and 8 to 12-loci MIRU-VNTR. Spoligotyping identified 64 profiles and MIRU-VNTR distinguished 2 to 36 subtypes within each spoligotype, enabling differentiation of mixed or clonal populations. Common genotypic profiles within and among livestock and wildlife in the same spatiotemporal context highlighted epidemiological links across hosts and regions, as for example the SB0119-M205 genotype shared by cattle in Beja district or SB0121-M34 shared by the three hosts in Castelo Branco and Beja districts. These genomic data, together with metadata, were integrated in a Bayesian inference framework, identifying five ancestral M. bovis populations. The phylogeographic segregation of M. bovis in specific areas of Portugal where the disease persists locally is postulated. Concurrently, robust statistics indicates an association of the most probable ancient population with cattle and Beja, providing a clue on the origin of animal TB epidemics. This relationship was further confirmed through a multinomial probability model that assessed the influence of host species on spatiotemporal clustering. Two significant clusters were identified, one that persisted between 2004 and 2010, in Beja district, with Barrancos county at the centre, overlapping the central TB core area of the Iberian Peninsula, and highlighting a significant higher risk associated to cattle. The second cluster was predominant in the 2012-2016 period, holding the county Rosmaninhal at the centre, in Castelo Branco district, for which wild boar contributed the most in relative risk. These results provide novel quantitative insights beyond empirical perceptions, that may inform adaptive TB control choices in different regions.


Assuntos
Mycobacterium bovis/genética , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/genética , Animais , Animais Selvagens/microbiologia , Bovinos , Cervos/genética , Cervos/microbiologia , Genótipo , Gado/genética , Mycobacterium bovis/patogenicidade , Filogenia , Portugal/epidemiologia , Sus scrofa/genética , Sus scrofa/microbiologia , Tuberculose/microbiologia
9.
Front Plant Sci ; 11: 889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714347

RESUMO

Hydrogen peroxide (H2O2) functions as an important signaling molecule in plants during biotic interactions. However, the extent to which H2O2 accumulates during these interactions and its implications in the development of disease symptoms is unclear. In this work, we provide a step-by-step optimized protocol for in situ quantification of relative H2O2 concentrations in wheat leaves infected with the pathogenic bacterium Pseudomonas syringae pv. atrofaciens (Psa), either alone or in the presence of the beneficial bacterium Herbaspirillum seropedicae (RAM10). This protocol involved the use of 3-3'diaminobenzidine (DAB) staining method combined with image processing to conduct deconvolution and downstream analysis of the digitalized leaf image. The application of a linear regression model allowed to relate the intensity of the pixels resulting from DAB staining with a given concentration of H2O2. Decreasing H2O2 accumulation patterns were detected at increasing distances from the site of pathogen infection, and H2O2 concentrations were different depending on the bacterial combinations tested. Notably, Psa-challenged plants in presence of RAM10 accumulated less H2O2 in the leaf and showed reduced necrotic symptoms, pointing to a potential role of RAM10 in reducing pathogen-triggered H2O2 levels in young wheat plants.

10.
Int Microbiol ; 23(3): 367-380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31828447

RESUMO

Wastewater treatment plants face major social concern towards removal of problematic pollutants such as fat oils and grease (FOG). In this context, the main objective of the present work was to select natural bacterial isolates from different polluted sites and evaluate them comparatively to isolates from commercial products, for improved bioremediation strategies and bioaugmentation. In total, 196 isolates were analysed for genomic diversity by two PCR-fingerprinting methods and screened for biodegradation potential with pollutants as sole carbon source. The net area under curve (NAUC) was used for preliminary evaluation of growth ability in M9 medium supplemented with oleic acid and triolein. A principal component analysis of all NAUC data showed that natural isolates presented higher overall biodegradation ability and enabled the selection of 11 natural isolates for lipid degradation assays. Selected isolates were identified by 16S rRNA gene sequencing as members of genera with previously described degradative strains, namely, Acinetobacter (1), Aeromonas (2), Bacillus (1), Pseudomonas (1) and Staphylococcus (6). Best biodegradation results in 7-days assay of FOG content removal were 37.9% for oleic acid and 19.1% for triolein by an Aeromonas sp. isolate and a Staphylococcus cohnii isolate, respectively. A respirometry approach confirmed their higher oxygen uptake rates, although longer adaptation phases where required by the Aeromonas sp. isolate. Consequently, these isolates showed great potential for future bioaugmentation products, to promote FOG degradation, for both in situ and ex situ approaches.


Assuntos
Bactérias/isolamento & purificação , Biodegradação Ambiental , Metabolismo dos Lipídeos/genética , Lipídeos , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Aeromonas/genética , Aeromonas/isolamento & purificação , Aeromonas/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Genes Bacterianos , Lipídeos/química , Óleos/metabolismo , Ácido Oleico/metabolismo , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Staphylococcus/metabolismo , Trioleína/metabolismo , Águas Residuárias/microbiologia
11.
DNA Res ; 26(1): 67-83, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462193

RESUMO

Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape-musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile. Despite this, the genetics and physiology of Hanseniaspora species remains poorly understood. The first genomic sequence of a H. guilliermondii strain (UTAD222) and the discussion of its potential significance are presented in this work. Metabolic reconstruction revealed that H. guilliermondii is not equipped with a functional gluconeogenesis or glyoxylate cycle, nor does it harbours key enzymes for glycerol or galactose catabolism or for biosynthesis of biotin and thiamine. Also, no fructose-specific transporter could also be predicted from the analysis of H. guilliermondii genome leaving open the mechanisms underlying the fructophilic character of this yeast. Comparative analysis involving H. guilliermondii, H. uvarum, H. opuntiae and S. cerevisiae revealed 14 H. guilliermondii-specific genes (including five viral proteins and one ß-glucosidase). Furthermore, 870 proteins were only found within the Hanseniaspora proteomes including several ß-glucosidases and decarboxylases required for catabolism of biogenic amines. The release of H. guilliermondii genomic sequence and the comparative genomics/proteomics analyses performed, is expected to accelerate research focused on Hanseniaspora species and to broaden their application in the wine industry and in other bio-industries in which they could be explored as cell factories.


Assuntos
Fermentação , Genoma Fúngico , Hanseniaspora/genética , Hanseniaspora/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Análise de Sequência de Proteína
12.
Nat Commun ; 9(1): 4857, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451842

RESUMO

Anthrax is an infectious disease caused by Bacillus anthracis, a bioterrorism agent that develops resistance to clinically used antibiotics. Therefore, alternative mechanisms of action remain a challenge. Herein, we disclose deoxy glycosides responsible for specific carbohydrate-phospholipid interactions, causing phosphatidylethanolamine lamellar-to-inverted hexagonal phase transition and acting over B. anthracis and Bacillus cereus as potent and selective bactericides. Biological studies of the synthesized compound series differing in the anomeric atom, glycone configuration and deoxygenation pattern show that the latter is indeed a key modulator of efficacy and selectivity. Biomolecular simulations show no tendency to pore formation, whereas differential metabolomics and genomics rule out proteins as targets. Complete bacteria cell death in 10 min and cellular envelope disruption corroborate an effect over lipid polymorphism. Biophysical approaches show monolayer and bilayer reorganization with fast and high permeabilizing activity toward phosphatidylethanolamine membranes. Absence of bacterial resistance further supports this mechanism, triggering innovation on membrane-targeting antimicrobials.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Glicosídeos/farmacologia , Fosfatidiletanolaminas/antagonistas & inibidores , Bacillus anthracis/química , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/metabolismo , Bacillus cereus/química , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/metabolismo , Células CACO-2 , Configuração de Carboidratos , Membrana Celular/química , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Humanos , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Transição de Fase , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Relação Estrutura-Atividade
13.
BMC Genomics ; 18(1): 726, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899413

RESUMO

BACKGROUND: Swine brucellosis caused by B. suis biovar 2 is an emergent disease in domestic pigs in Europe. The emergence of this pathogen has been linked to the increase of extensive pig farms and the high density of infected wild boars (Sus scrofa). In Portugal and Spain, the majority of strains share specific molecular characteristics, which allowed establishing an Iberian clonal lineage. However, several strains isolated from wild boars in the North-East region of Spain are similar to strains isolated in different Central European countries. RESULTS: Comparative analysis of five newly fully sequenced B. suis biovar 2 strains belonging to the main circulating clones in Iberian Peninsula, with publicly available Brucella spp. genomes, revealed that strains from Iberian clonal lineage share 74% similarity with those reference genomes. Besides the 210 kb translocation event present in all biovar 2 strains, an inversion with 944 kb was presented in chromosome I of strains from the Iberian clone. At left and right crossover points, the inversion disrupted a TRAP dicarboxylate transporter, DctM subunit, and an integral membrane protein TerC. The gene dctM is well conserved in Brucella spp. except in strains from the Iberian clonal lineage. Intraspecies comparative analysis also exposed a number of biovar-, haplotype- and strain-specific insertion-deletion (INDELs) events and single nucleotide polymorphisms (SNPs) that could explain differences in virulence and host specificities. Most discriminative mutations were associated to membrane related molecules (29%) and enzymes involved in catabolism processes (20%). Molecular identification of both B. suis biovar 2 clonal lineages could be easily achieved using the target-PCR procedures established in this work for the evaluated INDELs. CONCLUSION: Whole-genome analyses supports that the B. suis biovar 2 Iberian clonal lineage evolved from the Central-European lineage and suggests that the genomic specialization of this pathogen in the Iberian Peninsula is independent of a specific genomic event(s), but instead driven by allopatric speciation, resulting in the establishment of a new ecovar.


Assuntos
Brucella suis/genética , Evolução Molecular , Genômica , Cromossomos Bacterianos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
14.
Springerplus ; 5(1): 1574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652147

RESUMO

Crop management systems influence plant productivity and nutrient use efficiency, as well as plant growth-promoting rhizobacteria (PGPR), which are known to influence the growth of plants via phytohormone production, phosphate solubilization, nitrogen (N) fixation and antimicrobial activity. The objective of this study was to compare the influence of two crop management system on microbial PGPR features. PGPR isolated from the rhizospheres of Carica papaya L. grown under two distinct management systems (conventional and organic) were identified and characterized. The 12 strains most efficient in solubilizing inorganic phosphate belonged to the genera Burkholderia, Klebsiella, and Leclercia. N fixation was observed in the strains B. vietnamiensis from the conventional farming system and B. vietnamiensis, B. cepacia and Leclercia sp. from the organic farming system. The B. vietnamiensis, B. cepacia, Klebsiella sp. and Klebsiella sp. isolates showed antifungal activity, while Leclercia sp. did not. The strains B. vietnamiensis and Enterobcter sp. (isolated from the conventional farming system) and Klebsiella sp. (isolated from the organic farming system) were efficient at solubilizing phosphate, producing phytohormones and siderophores, and inhibiting the mycelial growth of various phytopathogenic fungi (Botrytis cinerea, Pestalotia sp., Alternaria sp., Phoma sp., Fusarium culmorum, Geotrichum candidum). Physiological differences between the isolates from the two crop management regimes were distinguishable after 10 years of distinct management.

15.
Vet Microbiol ; 192: 220-225, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27527786

RESUMO

Optical mapping is a technology able to quickly generate high resolution ordered whole-genome restriction maps of bacteria, being a proven approach to search for diversity among bacterial isolates. In this work, optical whole-genome maps were used to compare closely-related Brucella suis biovar 2 strains. This biovar is the unique isolated in domestic pigs and wild boars in Portugal and Spain and most of the strains share specific molecular characteristics establishing an Iberian clonal lineage that can be differentiated from another lineage mainly isolated in several Central European countries. We performed the BamHI whole-genome optical maps of five B. suis biovar 2 field strains, isolated from wild boars in Portugal and Spain (three from the Iberian lineage and two from the Central European one) as well as of the reference strain B. suis biovar 2 ATCC 23445 (Central European lineage, Denmark). Each strain showed a distinct, highly individual configuration of 228-231 BamHI fragments. Nevertheless, a low divergence was globally observed in chromosome II (1.6%) relatively to chromosome I (2.4%). Optical mapping also disclosed genomic events associated with B. suis strains in chromosome I, namely one indel (3.5kb) and one large inversion (944kb). By using targeted-PCR in a set of 176 B. suis strains, including all biovars and haplotypes, the indel was found to be specific of the reference strain ATCC 23445 and the large inversion was shown to be an exclusive genomic marker of the Iberian clonal lineage of biovar 2.


Assuntos
Brucella suis/genética , Inversão Cromossômica/genética , Mapeamento Cromossômico , Genoma Bacteriano/genética , Brucella suis/classificação
16.
Methods Mol Biol ; 1247: 323-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25399106

RESUMO

Pulsed-field gel electrophoresis (PFGE) separates large DNA molecules by the use of an alternating electrical field, such that greater size resolution can be obtained when compared to normal agarose gel electrophoresis. PFGE is often employed to track pathogens and is a valuable typing scheme to detect and differentiate strains. Particularly, the contour-clamped homogeneous electric field (CHEF) PFGE system is considered to be the gold standard for use in epidemiological studies of many bacterial pathogens. Here we describe a PFGE protocol that was applicable to the study of bovine streptococci, namely, Streptococcus agalactiae (group B Streptococcus, GBS), Streptococcus dysgalactiae subsp. dysgalactiae (group C Streptococcus, GCS), and Streptococcus uberis-which are relevant pathogens causing mastitis, a highly prevalent and costly disease in dairy industry due to antibiotherapy and loss in milk production.


Assuntos
Eletroforese em Gel de Campo Pulsado/métodos , Mastite Bovina/diagnóstico , Mastite Bovina/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus/genética , Animais , Bovinos , Impressões Digitais de DNA , Feminino , Tipagem Molecular
17.
Genome Announc ; 2(4)2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25013144

RESUMO

The Brucella suis haplotype 2c is commonly isolated from wild boars and domestic pigs across Central Europe, though it is rarely described in the Iberian Peninsula. We report here the complete and annotated genome sequences of two haplotype 2c strains isolated from wild boars in the northeast region of Spain, above the Ebro River.

18.
Genome Announc ; 2(4)2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24994794

RESUMO

Brucella suis biovar 2 is the most common biovar isolated from wild boars (Sus scrofa) associated with transmission to outdoor-reared pigs in Europe. We report here the complete and annotated genome sequences of three strains isolated from wild boars in Portugal and Spain and belonging to the Iberian clone (haplotypes 2d and 2e).

19.
Mar Drugs ; 11(5): 1506-23, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23665957

RESUMO

Interesting biological activities have been found for numerous marine compounds. In fact, screening of phylogenetically diverse marine microorganisms from extreme environments revealed to be a rational approach for the discovery of novel molecules with relevant bioactivities for industries such as pharmaceutical and cosmeceutical. Nevertheless, marine sources deliverables are still far from the expectations and new extreme sources of microbes should be explored. In this work, a marine prokaryotic collection from four Mid-Atlantic Ridge (MAR) deep sea hydrothermal vents near the Azores Islands, Portugal, was created, characterized and tested for its photoprotective capacity. Within 246 isolates, a polyphasic approach, using chemotaxonomic and molecular typing methods, identified 23-related clusters of phenetically similar isolates with high indexes of diversity. Interestingly, 16S rRNA gene sequencing suggested the presence of 43% new prokaryotic species. A sub-set of 139 isolates of the prokaryotic collection was selected for biotechnological exploitation with 484 bacterial extracts prepared in a sustainable upscalling manner. 22% of the extracts showed an industrially relevant photoprotective activity, with two extracts, belonging to new strains of the species Shewanella algae and Vibrio fluvialis, uniquely showing UV-A, UV-B and UV-C protective capacity. This clearly demonstrates the high potential of the bacteria MAR vents collection in natural product synthesis with market applications.


Assuntos
Organismos Aquáticos , Bactérias/química , Fontes Hidrotermais/microbiologia , Raios Ultravioleta/efeitos adversos , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Biotecnologia , Portugal , RNA Ribossômico 16S/genética
20.
Vet Microbiol ; 163(3-4): 378-82, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23375652

RESUMO

Enterococci are ubiquitous microorganisms found as part of the normal intestinal microbiota of many animals such as the free-ranging Eurasian otter (Lutra lutra Linnaeus, 1758). In this work, twenty-nine enterococci isolated from fecal samples of Eurasian otters free-living in reservoirs and associated river stretches in South Portugal were identified and typed by conventional/molecular methods and screened for virulence factors and antibiotic resistance. Identification allocated the isolates to the species Enterococcus faecalis (19), E. faecium (9) and E. durans (1) and PCR-fingerprinting revealed their high genomic diversity. Regarding virulence factors, three isolates produced cytolysin and six were gelatinase-positive. Genes ace and acm were detected in five enterococci each, ebpABC in seventeen, gelE in fourteen and cylA in three. All isolates showed resistance patterns and antibiotic resistance genes tet(M) and pbp5 were detected in seventeen isolates each, whereas vanB and vanD were identified in thirteen and five, respectively, being most van-harboring isolates members of E. faecium. The aac(6')-Ie-aph (2″) gene, encoding for gentamicin resistance, was observed in all gentamicin-resistant enterococci. Since all isolates harbor virulence and/or antibiotic resistance traits, the role of free-living Eurasian otters in the dissemination of virulent/resistant enterococci among other animals sharing the same ecological niche cannot be disregarded, as well as the health risk they may represent for humans directly interacting with them or their habitat.


Assuntos
Enterococcus/efeitos dos fármacos , Enterococcus/patogenicidade , Infecções por Bactérias Gram-Positivas/veterinária , Lontras/microbiologia , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Enterococcus/classificação , Enterococcus/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Portugal , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...